
K-word Proximity Search on Encrypted Data
Mark Gall, Gerd Brost

Fraunhofer AISEC
Garching, Germany

e-mail: {gall, brost}@aisec.fraunhofer.de

Abstract—Current Symmetric Searchable Encryption schemes
do not fulfill the expectations of users who are used to web search
engines. Although users are now able to search for multiple key-
words, Boolean retrieval returns all results to a client regardless
of how relevant the results are for the user. For searches in large
data sets when result sets are also expected to be large, Boolean
retrieval is not appropriate for users of current information
retrieval systems (which are expecting proximity search). In this
paper, we present an SSE scheme that allows ranked retrieval
on encrypted data. More specifically, we enhanced highly-scalable
Boolean retrieval with k-word proximity ranking. Additionally,
we introduce an access control in our search engine, such that
clients searching the data set will not learn anything about parts
of the data set, for which they are not eligible. To achieve this,
we rely on attribute-based authentication. The applicability of
our scheme was shown in a prototypical implementation.

Index Terms—searchable encryption; attribute-based encryp-
tion; proxy re-encryption; proximity search;

I. INTRODUCTION

Searchable symmetric encryption (SSE) is a cryptographic
primitive that enables a client to outsource the storage of data
to a server, while keeping the data private from the server
and maintaining the possibility to selectively search over the
data. A client encrypts his data using an encryption algorithm
defined in the searchable encryption (SE) scheme and stores
the encrypted data on a server. Later, the client can search the
encrypted data through interaction with the server following
a search protocol defined in the SE scheme. Such schemes
have to balance efficiency of the information retrieval process
against security in the form of information leakage to the
server.

In the past, most of the SSE schemes have addressed single
keyword queries in varying degrees of efficiency and data
leakage. Only recently schemes with efficient constructions
for multi-keyword queries in a Boolean retrieval model have
been presented [1], [2]. But even with these advances SSE
schemes cannot fulfill the expectations a user has from a
modern information retrieval system. Users of web search
engines are used to enter multiple words in a search field and
retrieve results that not only contain all the keywords, but are
ranked according to their relevance. One possibility to rank
results that has proven to be useful in web search engines is
adjacency and proximity of query terms [3].

The existing SSE schemes that allow information retrieval
with multiple keywords employ the bag of words model, which
ignores the exact ordering of terms in documents. A document-
level inverted index is used to indicate whether a search term

occurs in the document or not. In order to be able to handle
phrase and proximity queries a word-level index is required
that includes word positions of each term in each document.

We present a symmetric searchable encryption scheme that
is also based on the bag of words model, but uses a word-level
index with word positions to allow the handling of phrase and
proximity queries. Our search scheme expects free text queries
from the client and handles them as implicit proximity queries,
i.e. the scheme searches for documents matching all query
terms and ranks the results according to the proximity of the
terms in the documents.

Additionally, our setting differs from the standard SSE
setting. We expect multiple clients to search the database,
not just a single user. Also, we allow the clients to have
differing access rights to the data within the database, i.e. not
all documents are accessible by the same set of users. A search
scheme should reflect this and return only document ids to a
client with matching access rights. In our scheme, we enforce
access rights with Ciphertext-Policy ABE (CP-ABE) [4], i.e.
the documents are encrypted with CP-ABE and stored on a
file server. CP-ABE embeds policies in the cipher texts that
only allow decryption if the attributes embedded in the private
key of a client fulfill the policy. To retrieve search results,
the client must present his attribute set to the server, which
verifies them. This is achieved by implementing an attribute-
based authentication mechanism.

In section II, we define the notation used throughout the
paper and describe our setting. In section III we present our
construction with all relevant components. A security analysis
is given in section IV. We briefly describe our prototypical
implementation of our construction in section V and present
related work in section VI.

II. PRELIMINARIES

We assume that readers are familiar with pseudorandom
functions (PRF) and symmetric encryption schemes with se-
mantic security. The problem of k-word proximity search for
ranking documents has been defined by Sadakane et al. [5].
Proximity search ranks results according to the proximity of
the occurrences of the search terms in the result documents.
They are used to improve search results on large data sets
and are widely used in web search engines, but mostly only
implicitly. It is possible to allow users to explicitly form
proximity search queries, e.g. employment /3 place where /3
indicates that the employment should occur within three words
on either side of place. The larger the data set and the larger

the expected result set of a search, the more important ranking
becomes.

A. Notation

Let ∆ = {w1, . . . , wd} be a dictionary of d words repre-
sented as bit strings, i.e. wi ∈ {1, 0}∗. Let DB ⊆ 2∆ be a
collection of n documents DB = (D1, . . . ,Dn). We denote
by DB(w) the lexicographically ordered list consisting of the
identifiers of all documents in DB that contain the word w. The
identifier of a document is also represented as a bit string. Let
[n] = {1, . . . , n}. We denote with v a vector and with v[i] the
i-th component of v. When we get a value from a dictionary
D with key k we write Get(D, k).

Let λ be the security parameter. We denote with PRF() a
standard pseudorandom function and with PRFp() a pseudo-
random function that maps the result to Z∗p. Enc() denotes a
semantically secure symmetric encryption scheme. We write
K

R← {0, 1}λ to denote a key of length λ sampled uniformly
at random as a bit string. For PRFp() we sample the key from
Z∗p. A negligible function in λ is denoted by negl(λ).

B. Setting

Our setting consists of multiple clients (C), a data owner
(D), a trusted ranking server (RS) and an untrusted index
server (IS). Clients may only search the data store with
permission of the data owner. Note that not all clients share the
same permissions, i.e. some clients are allowed to search and
access information that is inaccessible for others. After gaining
permission from the data owner once, clients may process
as many search queries as they want. They send their search
queries to the ranking server, who transforms the queries and
sends them to the index server. The index server processes
the search query and sends the results to the ranking server.
The RS filters the results such that only results for which the
querying client is eligible are send back to the client and ranks
the results before sending them to the client according to the
proximity of occurrences of the terms. Note that filtering is
for the sake of reducing information leakage to clients. The
access control itself still is provided by the ABE-encryption
of the documents.

C. Security Games

We recall the security definition for adaptive L-
semantically-security as defined in [1] and adapt them slightly
to match our notation and setting. The definition is a
parametrized version of the security definition of adaptive
semantic security for SSE [6]:
Definition: Let Π = (Init,Search) be a SSE-scheme and let
L be a stateful algorithm. For algorithms A and S, we define
games RealΠA(λ) and IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses DB. The game then runs
(K,EDB, DF)← Init(DB) and gives EDB to A. Then A
repeatedly chooses a query q. To respond, the game runs
the Search protocol with client input (KQ ∈ K, q). The
input for RS is DF and K,KX ,KZ , rkDI→C ∈ K and
the input for the IS is EDB. The RS gives the transcript

of the protocol run and client output to A. Eventually, A
returns a bit that the game uses as its own output.

IdealΠA,S(λ) : The game initializes a counter i = 0 and an
empty list q. A(1λ) chooses DB. The game then runs
EDB ← S(L(DB)) and gives EDB to A. Then A
repeatedly chooses a query q. To respond, the game
records this as q[i], increments i, and gives to A the
output of S(L(DB,q)). Eventually A returns a bit that
the game uses as its own output.

We say that Π is L-secure against adaptive attacks if for all
PPT adversary A there exists an algorithm S such that

Pr[RealΠA(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ negl(λ).

III. K-WORD PROXIMITY SEARCH ON ENCRYPTED DATA

A. Overview

A client C creates a search query with encrypted search
terms and sends it to RS. Without learning the plaintext of
encrypted terms RS creates the search tokens for a conjunctive
search of all search terms. RS interacts with IS to retrieve the
results of this search and decrypts the positional information
from the results. With the positional information RS ranks
the results according to the proximity of the occurring search
terms. It also filters those documents from the results for which
the client C is not eligible, i.e. the client must have at least
the attributes the document has been encrypted for. RS returns
the ranked and filtered results to the client, who decrypts the
document ids and retrieves the respective documents separately
from a file server.

B. Index generation

Handling proximity searches requires a word-level inverted
index instead of a document-level index. An inverted index
defines document references for each word in the index to
allow fast text searches. To create a secure word-level index
that can be used for processing proximity searches, we extend
the document-level index structure used in the construction
by Cash et al. [7] with information for the OXT protocol [1]
– so that it can deal with multi-keyword queries – and with
positional information. The inverted list postings containing
the positional information take the form:

< Enc(pkDI
, d), Enc(K2, fd,t||[P0,d,t, . . . , Pfd,t,d,t]) >

The document id d is encrypted with a different key than
the frequency f and the positions Pi,d,t of term t in document
d, because the RS needs access to the latter information
for performing the ranking. The document id d – needed to
retrieve the document from the file server storing the docu-
ments – is information that the RS should remain oblivious
of. We omit how positional information gets extracted from
the documents and assume that we have access to the list of
keyword positions Pw,d = [P0,d,t, . . . , Pfd,t,d,t] for each term
t and each document d when we generate the index.

The OXT protocol operates on an encrypted database EDB
that consists of two data structures TSet and XSet, i.e.
EDB = (TSet,XSet). Both data structures can be realized

CreateTSet(DB,K,KQ, pkDI
)

1. Allocate list LT
2. For each w ∈W :
3. t← PRF(KQ, w)
4. K1 ← PRF(K, t||1);K2 ← PRF(K, t||2);

K3 ← PRF(K, t||3)
5. Initialize counter c← 0
6. For each d ∈ DB(w):
7. l← PRF(K1, c)
8. a← Enc(K3, Ad)
9. d′ ← Enc(pkDI

, d)
10. p← Enc(K2, c||Pw,d)
11. x← PRFp(KI , d)
12. z ← PRFp(KZ , t||c)
13 y ← x · z−1

14. c← c+ 1
15. Add (l, a, d′, y, p) to LT (in lexicographic order)
16. Set DT ← Create(LT)
17. Output DT

Fig. 1. Generation of TSet for OXT [1] extended with positional information

by dictionaries. The TSet is basically a document-level in-
verted index for each keyword. The XSet is a construction
to enable the efficient search with Boolean queries instead of
single-keyword queries. The creation of a TSet extended with
positional data is shown in Figure 1. CreateTSet() takes as
input the unencrypted database and three keys K,KQ, pkDI

.
Keys K1,K2,K3 are derived from K to create the pseudo-
random label l, to encrypt the positional information Pw,d
and to encrypt the encoding of the authorized attribute set
of document d. This attribute set is derived from the access
structure A of the ABE-encrypted document. When creating
an CP-ABE ciphertext, attributes are encoded by their literal
description (e.g,. as string values) to a bitstring for efficiency
reasons. The key KQ is used to encrypt the search terms
in order to retain a certain level of privacy between the
client and the RS. The key pkDI

is used to encrypt the
document ids. An entry for the dictionary is comprised of
the pseudorandom label l, the encrypted bitstring representing
attributes a (which are required to decrypt), the encrypted
document id d′, the precomputed blinding y from OXT and
the encrypted positional information p. Following the approach
from Cash et al. [7] we collect all entries in sorted list and
create a dictionary from it to achieve history-independence
(i.e., the structure of a dictionary does only depend on the
elements in the lists, not the order of creation).

The creation of the XSet is shown in Figure 2.
CreateXSet() takes as input the unencrypted database and
two keys K and KQ. Key K2 is derived from key K to
encrypt the positional information. It is important that the
cipher texts of the positional information in the XSet and
TSet cannot be correlated, otherwise the IS will be able to
correlate which terms in the TSet and XSet correspond to
each other by using this positional information. To ensure this

CreateXSet(DB,K,KQ)

1. KI ,KX ,KZ
R← Z∗p

2. Allocate list LX
3. For each w ∈W :
4. t← PRF(KQ, w)
5. KP ← PRF(K, d′)
6. Initialize counter c← 0
7. For each d ∈ DB(w):
8. p← Enc(KP , c||Pw,d)
9. x← PRFp(KI , d)
12. c← c+ 1
13. xt← gPRFp(KX ,t)·x

14. Add (xt, p) to LX (in lexicographic order)
15. Set DX ← Create(LX)
16. Output the keys KI ,KX ,KZ and DX

Fig. 2. Generation of XSet for OXT [1] extended with positional information

we concatenate different counters for the TSet and the XSet
to the positional information before encrypting it. The keys
KI ,KX ,KZ for the OXT protocol are generated and used
to compute the xtag xt for each entry of the dictionary. The
dictionary uses xt as the label and the encrypted positional
information p as value. Similar as before we collect all entries
in a sorted list and create the dictionary from it to achieve
history-independence.

With this preparation the generation of the encrypted posi-
tional index shown in Figure 3 works similar to the setup
of the encrypted index described by Cash et al. [7]. The
key K is generated based on the security parameter λ, the
keys pkDI

, skDI
are generated according to the generation

algorithm of the re-encryption scheme [8]. Additionally to the
XSet and TSet, a dictionary DF is created that stores the
document frequencies of the encrypted search terms. Init()
outputs all created keys as well as the encrypted database
EDB and the frequency dictionary DF .

In our setting the data owner D is supposed to run Init()
and distribute the output as follows: The IS receives EDB,
the RS receives DF and the keys K,KX ,KZ . The rest of the
keys are retained by D.

C. Granting search permission to clients

The first time a client wants to search the data store, it needs
to get permission from the data owner. The client creates a key
pair (pkC , skC) and sends the data owner his public key pkC .
The data owner sends the key KQ to the client, creates a re-
encryption key rkDI→C and sends it to the ranking server. This
enables the RS to re-encrypt the document ids such that the
client is able to decrypt them. When a client wants to search
the data store, it sends search tokens encrypted with KQ to
the ranking server, who processes the search and prepares a
list of document ids matching the query as a result. These
document ids have been encrypted by the data owner with
pkDI

using a uni-directional proxy re-encryption scheme –
e.g. one of the schemes presented by Ateniese et al. [8] –
and can be re-encrypted by RS using the re-encryption key

Init(DB)

1. K,KQ
R← {0, 1}λ; KI ,KX ,KZ

R← Z∗p
2. Generate (pkDI

, skDI
)

3. Allocate list LF
4. For each w ∈W :
5. t← PRF(KQ, w)
6. Initialize counter c← 0
7. For each d ∈ DB(w):
8. c← c+ 1
9. Add (t, c) to LF
10. Set DT ← CreateTSet(DB,K,KQ, pkDI

)
11. Set DX ← CreateXSet(DB,K,KQ)
12. Set DF ← Create(LF)
13. Output keyset K = {K,KI ,KX ,KZ ,KQ, pkDI

, skDI
}

and EDB = (DT , DX) and DF

Fig. 3. Generation of positional index

rkDI→C to a cipher text encrypted with pkC . The RS sends
the re-encrypted ciphertexts to the client, who can decrypt
the document ids using his private key skC and retrieve the
documents from a file server.

D. Attribute based authentication

To minimize information leakage to the client, only docu-
ment ids of documents that are accessible for the client should
be returned so that the client learns nothing about the parts
of the database that are inaccessible to him. The client owns
a set of attributes that is embedded in his private key. For
documents that are accessible to the client, his attribute set
fulfills the access policy embedded in the CP-ABE encrypted
documents. Thus, the RS needs to verify client attributes,
before returning results to a client and check if the client’s
attributes will fulfill the policy. The RS uses attribute based
authentication to achieve this.

CP-ABE offers the following methods:
ABE.Setup(λ,U) that takes a security parameter and the

attribute universe to generate public parameters PK and
the master key MK.

ABE.Encrypt(PK,M,A) which takes as input the public
parameters, the message to encrypted and the access
structure A which defines the policy under which the
message is encrypted and generates the cipher text CT.

ABE.KeyGen(MK,S) takes the master key and the set
of attributes a key should be generated for. It outputs a
private key SK.

ABE.Decrypt(PK,CT,SK) is called to decrypt a mes-
sage. It takes as input the public parameters, a cipher
text containing an access structure A and a private key
SK. If the attributes embedded in the private key satisfy
A, it outputs the message M.

It is easy to see that the generated MK needs to be kept
private by the key server and serves as the master secret.

A simple approach to realize attribute based authentication
is shown in Figure III-D. The RS can use the CP-ABE scheme

1 C → RS send attribute set AC
calculate nonceABE(AC)

2 C ← RS send nonceABE(AC)

3 C → RS send decrypted nonce
RS compares nonce values
and verifies AC

Fig. 4. Access control for ABE tokens; C: Client, RS: Ranking Server, C
holds Attribute Set AC

to verify client attributes. The attributes of the client are
embedded in his private key, which it must keep secret. The
server encrypts a nonce under the attributes, the client claims
to possess. If the client can decrypt the nonce, the client’s
attributes verified and the client is authenticated under that
attribute set.

Once the RS has verified that the client can decrypt a nonce
encrypted for the claimed attributes, it can filter the result set
for results with a matching access structure and return the
filtered results to the client. Since in our ABE scheme every
participant can encrypt a cipher text under an attribute set, no
extra key-exchange is needed.

E. Searching

When a client wants to search the data store, it initiates the
search protocol given in Figure 5. We will discuss important
steps of that protocol: The client forms a search query by
encrypting all query keywords qi that it wants to search for
separately using the key KQ. It received KQ from the data
owner, when it was granted permission to search.

The client sends the encrypted query to the RS, who checks
if it has a re-encryption key rkDI→C for this client. If the data
owner has granted permission beforehand to the client, this
will be the case. Searching with the OXT protocol is most
efficient when choosing the main search term st (which is
used to generate the sterm for OXT) to be the one with the
lowest document frequency df . Therefore the RS queries the
document frequency dictionary DF with all terms q′i. Let q′k be
this term (the one with the lowest frequency), then RS uses
K to generate the intermediate key K1 = PRF (K, qk||1).
K1 is used to create the sterm st. The xtags xt are created
per document id. This is in contrast to the original OXT
protocol [1], in which only a single st is created together with
the same amount of xtags as in our protocol. There the TSet
was comprised of lists of document ids that can be retrieved by
a single sterm. Depending on the implementing data structure
this can leak the document frequency of each term to the
server. Following the single keyword approach in [7] this
can be avoided and document frequency is only leaked for
terms that have been searched for. Our protocol extends this
approach to multi-keyword searches with the consequence that
df sterms are needed instead of one.

The RS sends the search tokens t to the index server. The
index server uses the search tokens to perform a conjunctive
search, following our modified OXT protocol. The IS retrieves
a data entry from DT with the sterm st and calculates for each

Search
C: On input (KQ, q = (q0, . . . , qn))

For 1 ≤ i ≤ n :
q′i ← PRF(KQ, qi)

Send q′ = (q′0, . . . , q
′
n) to RS

RS: On input (DF , q
′,K,KX ,KZ)

Set index k of least frequent term q′k :
df ← Get(DF , q

′
k) = min

1≤i≤n
({Get(DF , q

′
i)})

Set K1 ← PRF(K, q′k||1)
For c = 1, . . . , df :

Set sterm st[c]← PRF(K1, c)
For q′j with 1 ≤ j ≤ n and j 6= k :

xt[c, j]← gPRFp(KZ ,q
′
k||c)·PRFp(KX ,q

′
j)

Set xterm xt[c]← (xt[c, 1], . . . , xt[c, n− 1])
Send t = ((st[1], xt[1]), . . . , (st[df], xt[df])) to IS

IS: On input (EDB = (DT , DX), t)
Allocate list L
For c = 1, . . . , df :

(d′[c], a[c], y[c], pT [c])← Get(DT , st[c])
For 1 ≤ i < n

Calculate xtag[c, i]← xt[c, i]y[c]

pX [c, i]← Get(DX , xtag[c, i])
If pX [c, i] 6= ⊥ for all i :

pX [c]← (pX [c, 1], . . . , pX [c, n− 1])
Add (d′[c], a[c], pT [c], pX [c]) to list L

Send L to RS

RS: On input (L, rkDI→C , AC ,K)
Allocate n lists Li and list LR
For each (d′, a, pT , pX) ∈ L :

Add (d,Dec(a),Dec(pT)) to list L1

Add (d,Dec(pX [i])) to list Li for 1 < i ≤ n
LR ← KWordProximityRanking(Li)
LR ← FilterAccessRights(AC , LR)
LR ← ReEncrypt(rkDI→C , LR)
Output LR

Fig. 5. Search protocol

xt the corresponding xtag. It tries to retrieve the positional
information p from DX . If DX returns ⊥ for any xtag then
the data entry is discarded. Otherwise the IS combines the data
entry from DT with the positional information retrieved from
DX and stores it in a result list. After the IS has processed
all search tokens it returns the result list to the RS.

The RS uses K2 to decrypt the positional information of
the search results and forms posting lists Li by splitting the
information of the elements of the input list L. The set of
attributes – encoded as a bit string – is required to decrypt
the document and is added to L1 only. Thus the postings of
L1 slightly differ from those of Li for i > 1, which take the
form:

< Enc(pkDI
, d), fd,t||[P0,d,t, . . . , Pfd,t,d,t] >

At this point the RS has all relevant posting lists for the
current search and can then run standard k-word proximity
algorithms, such as the plane-sweep algorithm of Sakadane
et al. [5] and perform a k-word proximity ranking. After the
proximity ranking the RS matches the attributes of the client
with the attributes required to decrypt the data and filters out
the results for which the client is not eligible. Wether a client is
eligible depends on the set of attributes it possesses and which
were authenticated before. To match filter by attribute sets, for
every item in LR, a[c] is matched with AC (also encoded as
a bit string) and only valid results are returned. The method
FilterAccessRights(LR,AC) takes the arguments LR (the
result list, which also contains the access structure for each
document) and AC , the attribute set of the client. Only results
matching AC are returned.

Finally, the RS uses the re-encryption key rkDI→C to re-
encrypt the document ids d′ in the result list LR to d′′, so that
d′′ is a cipher text that can be decrypted with the private key
skC of the client and outputs LR.

IV. SECURITY ANALYSIS

In this section, we will describe the leakage function and
use this construct to analyze what information can be learned
by and adversary.

The first step in the security analysis of our protocol is
the definition of the leakage function L that parametrizes the
security definition. We note that for the analysis only the
leakage towards the IS is important. The RS is a trusted
server in terms of SE. This does not affect cryptographic
access control of the ABE-encrypted documents, however. The
data owner takes no part in the search protocol, only in the
initialization (i.e. the creation of the encrypted database). In
our setting clients have differing access rights to the data set,
i.e. clients are only allowed to search and access those data
items for which they are eligible. As such a client must not
learn that there exist documents that match his query, but are
not accessible for him. The RS filters all information about
such documents from the results, so that no such information
is leaked.

As shown in Figure 5 the IS interacts directly only with the
RS, when the search protocol is run. From the perspective of
the IS, the interaction between the RS and the IS constitutes a
conjunctive search according to a modified version of the OXT
protocol [1]. This is due to the fact that our construction is
based on the basic construction from [7] and uses an adapted
version of the OXT protocol for the search. As a consequence,
we can infer the leakage function L of our protocol from the
leakage function of the original OXT.

The leakage function L is a stateful algorithm that describes
what an adversary – the IS – is allowed to learn about the
data and queries when interacting with a secure protocol. L
gets as initial input DB and outputs N =

∑
w∈W |DB(w)|.

Thereafter the input for the leakage function is DB and t,
where t consists of all previous queries in addition to the latest
query t = ((st[1], xt[1]), . . . , (st[df], xt[df])) for each search
that has been initiated by a client. The output of L consists of

the same components as the leakage function of the original
OXT, i.e. (N, s̄,SP,XP,RP, IP). Due to our modifications of
the protocol some of components of the output had to be
modified as well. For our modified protocol the components
of the output for the i-query is:

• N =
∑
w∈W |DB(w)|, the total number of entries in the

encrypted database.
• s̄ ∈ [m]i : The equality pattern s̄ includes all previous i−

1 queries between RS and IS and is formed by assigning
each sterm an integer in [m] determined by the order of
appearance. Though in our protocol each query t contains
multiple sterms, i.e. st[j], each st[j] is a deterministic
label and all of them represent the same keyword – just
like the single sterm in the original OXT – i.e. the IS will
know that a search was for the same keyword whenever
a client searches with a same st[j].

• SP ∈ [dfmax]i : Let dfmax be the maximum document
frequency of all terms in the encrypted database. The size
pattern of the queries is the document frequency df of
the first search term, i.e. the sterm which was chosen to
be the one with the lowest document frequency. In our
scheme this information is obvious to the server because
t = ((st[1], xt[1]), . . . , (st[df], xt[df]))

• XP ∈ Ni : The vector XP consists of the number of
xterms per query

• RP : The results pattern contains the results of the queries
matching the conjunctions, i.e. for query i it contains
RP[i] =

⋃df
i=1 DB(st[i]) ∩ DB(xt[i])

• IP : Formally, the conditional intersection pattern for the
i-th query is a i× i table and the entries are defined as:

IP[i, j, k, l] =


∪dfii=1DB(st[i])

⋂
∪dfjj=1DB(st[j])

if i 6= j ∧ k 6= l ∧ xtk[i] 6= xtl[j]

∅ otherwise

The parameter N is leaked, since to achieve reasonable
performance, data structures are created as dictionaries that
will leak the number of entry. This could be reduced by
introducing fake entries, but this would require more space
on the IS and would still lead to an upper bound, defined by
a factor in N .
s̄ will leak repetitions in s-terms, since our scheme is deter-

ministic and repeating s-terms can identified. So an adversary
is able to create a search history, identifying repeating patterns.
As in all variants of the OXT-protocol, multiple T-Sets could
be created for a certain keyword and clients could choose one
of these instantiations to disguise the query term. For larger
data sets, this would mean a considerable increase in database
size.
SP is caused by OXT’s optimized search, i.e. the separation

of TSet and XSet. As with the original OXT, artificially
extending the size of the TSet in our adapted version could
mitigate this by providing upper bounds of results instead of
the exact result count. However, storage and communication
cost would increase.

RP leaks the number of results of a query. Since we
use a deterministic scheme, we cannot disguise the results.
However, only repetition patterns can be detected. No semantic
information is leaked, since all query terms and all result
details are encrypted.

IP is a subtle form of leakage. If two queries share same
xterms but have different sterms and the result sets are not
disjoint, then information is leaked. The leakage consists of
the fact that there is a set of documents matching both sterms.
This leakage is also inherited by using OXT for conjunctive
searches. Choosing the terms with lowest document frequency
somewhat mitigates this leakage, but not entirely.

V. IMPLEMENTATION

We implemented a prototype of the k-word proximity search
protocol in Java. The prototype uses AES in CTR mode for
the encryption and HMAC for PRFs. The proxy re-encryption
is realized with an implementation of the third scheme of Ate-
niese et el. [8] and for the k-word proximity ranking we use a
modified version of the plane-sweep algorithm of Sakadane et
al. [5]. For the encryption of the documents, we implemented
the CP-ABE scheme of Waters [9]. Both re-encryption and CP-
APE are based on pairing based cryptography and we used the
Java variant of the Pairing-Based Crypto Library (JPBC) [10]
for the implementation.

VI. RELATED WORK

Song et al. proposed the first Searchable Encryption scheme
in [11]. This scheme is limited to fixed-size words and cannot
be used for more complex data structures than plaintext, since
it does not contain an index with a link to arbitrary data
items. Goh added a secure index to each document to bypass
these limitations in [12]. In [13], Chang and Mitzenmacher
present a solution with one index per document with prebuilt
dictionaries, causing few communication cost. Curtmola et
al. [6] add an inverted index which is generated for each
word instead of each document, improving search time since
only matching documents affect this. This technique is also
good practice in common information retrieval. Van Liesdonk
et al. [14] present a scheme with the same search efficiency,
but also efficient attribute updates. Chase and Kamara showed
a scheme based on Curtmola et al., but with adaptive security
in [15], also with optimal search time. This was later extended
with dynamic index updates in [16]. A dynamic SE scheme
with improved performance, designed for large scale databases
was presented by Cash et al. in [7].

The mentioned schemes allow for single keyword searches
only. A first scheme supporting conjunctive keyword search
is presented by Golle et al. in [17], but this scheme is also
causing high communication cost linear to the number of
stored items and is based on dedicated keyword fields in the
data structure. This is also true for several following schemes.
Wang et al. presented in [18] the first conjunctive search
scheme without the need for keyword fields. The first search
scheme with sublinear search speed and support for – almost –
arbitrary Boolean queries was presented by Cash et al. in [1].

Other approaches to the handling arbitrary Boolean queries
over encrypted data were presented by Pappas et al. [2] and
Moataz et al. [19].

Zittrower et al. [20] proposed a search scheme similar to
ours that is capable of handling phrase queries. But their
scheme is based on a single keyword searchable encryption
scheme and as such leaks to the server much more information
than our scheme when searching. Another approach to ranked
search over encrypted data was presented by Cao et al. [21].
Their scheme is capable of searching for multiple keywords,
but as they generate one index per document their search is
less efficient than ours. Also they do not include positional
information in their index structure as their ranking only
includes the number of occurrences of the keywords.

The term attribute-based encryption (ABE) has first been
coined by Sahai and Waters in [22], where they introduce an
error tolerance in IBE, allowing a decryption if k of n attributes
match in biometrics. This is partially based on the work of
Yao et al. in [23], where they show an IBE-system that is
able to encrypt to multiple hierarchical identities and already
show how to avoid collusion of users. The first separate ABE-
scheme for fine-grained access control of cryptographic data
was introduced by Goyal, Pandey, Sahai and Waters in [24],
where they present a key-policy attribute-based encryption
scheme (KP-ABE) that is much more expressive, using trees
of Boolean expressions as access structures that are used to
generate the key. The first scheme to embed the policy into the
cipher text was introduced by Bethencourt, Sahai and Waters
in [4]. This scheme was defined under the generic group model
and then later transformed by Waters into a scheme under the
standard model in [9].

VII. CONCLUSION AND FUTURE WORK

We presented a proximity search scheme on encrypted
data for multiple clients which supports proximity search
over conjunctive keyword queries and incorporates attribute
based encryption and authentication. Our scheme tries to
move searchable encryption closer to the state of the art in
full text search. Since our documents are encrypted not for
specific users but for bearers of attribute sets, we incorporated
a mechanism for attribute based authentication and filtering
results according to attributes. The scheme was implemented
in a prototype to show its feasibility.

In our setting, the ranking server is trusted and ranks the
results according to the proximity of the search terms in the
documents. The ranking server also filters document ids from
the result set for which the client does not have the necessary
attributes to decrypt the documents.

In general word-level indexes are bigger than document-
level indexes, because they store much more information. To
reduce the size of the word-level index in the future, we
will evaluate the use of more other storage encodings for the
positional information, e.g. d-gaps. Also, the current scheme
stores the positional information of all documents twice and
getting rid of the doubling would result in massive storage
gains. The doubling is due to the optimized search of OXT

and the fact that one part of the result is taken from the TSet,
while the other part is taken from the XSet. A naive solution
of using pointers in both sets to the same positional data item
leaks information to the server, it will know which item in the
TSet corresponds to which item in the XSet and vice versa.

The retrieval of ABE-encrypted ciphertexts leaks at least
the access structure and thus the embedded policy that needs
to be fulfilled to decrypt the document. In future work, we
will relax the security requirements of RS to enable arbitrary
deployment. Currently, whole documents are encrypted via
ABE. For future settings, we depend on atomic ABE to
efficiently encrypt parts of documents for different attribute
sets. We will also examine Predicate Encryption as a way
to hide the access policy. Also, to support mobile devices
and even less powerful devices, e.g. IoT devices, we will
utilize decentralized encryption techniques to save on required
computing power.

ACKNOWLEDGMENT

Parts of this work were funded from the ECOSSIAN project.
The ECOSSIAN project has received funding from the Eu-
ropean Union’s Seventh Framework Programme ([FP7/2007-
2013]) under grant agreement number SEC-607577.

REFERENCES

[1] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Advances in Cryptology–CRYPTO 2013. Springer,
2013, pp. 353–373.

[2] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi,
W. George, A. Keromytis, and S. Bellovin, “Blind seer: A scalable
private dbms,” in 2014 IEEE Symposium on Security and Privacy (SP).
IEEE, 2014, pp. 359–374.

[3] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
computing surveys (CSUR), vol. 38, no. 2, p. 6, 2006.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in IEEE Symposium on Security and Privacy, 2007.
SP’07. IEEE, 2007, pp. 321–334.

[5] K. Sadakane, “Fast algorithms for k-word proximity search,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. 84, no. 9, pp. 2311–2318, 2001.

[6] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proceedings of the 13th ACM conference on Computer and commu-
nications security. ACM, 2006, pp. 79–88.

[7] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Network and Distributed System
Security Symposium (NDSS’14), 2014.

[8] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Transactions on Information and System Security (TISSEC), vol. 9,
no. 1, pp. 1–30, 2006.

[9] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Public Key Cryptography–
PKC 2011. Springer, 2011, pp. 53–70.

[10] A. De Caro and V. Iovino, “jpbc: Java pairing based cryptography,”
in Proceedings of the 16th IEEE Symposium on Computers
and Communications, ISCC 2011. Kerkyra, Corfu, Greece, June
28 - July 1: IEEE, 2011, pp. 850–855. [Online]. Available:
http://gas.dia.unisa.it/projects/jpbc/

[11] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on
encrypted data,” in Security and Privacy, 2000. S&P 2000. Proceedings.
2000 IEEE Symposium on. IEEE, 2000, pp. 44–55.

[12] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, Report
2003/216, 2003, http://eprint.iacr.org/2003/216/.

[13] Y. Chang and M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” in Applied Cryptography and Network
Security. Springer, 2005, pp. 391–421.

[14] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and W. Jonker,
“Computationally efficient searchable symmetric encryption,” in Secure
data management. Springer, 2010, pp. 87–100.

[15] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” Advances in Cryptology-ASIACRYPT 2010, pp. 577–594, 2010.

[16] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 2012 ACM conference
on Computer and communications security. ACM, 2012, pp. 965–976.

[17] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in Applied Cryptography and Network Security.
Springer, 2004, pp. 31–45.

[18] P. Wang, H. Wang, and J. Pieprzyk, “Keyword field-free conjunctive
keyword searches on encrypted data and extension for dynamic groups,”
in Cryptology and Network Security, ser. Lecture Notes in Computer
Science, M. Franklin, L. Hui, and D. Wong, Eds. Springer Berlin
Heidelberg, 2008, vol. 5339, pp. 178–195.

[19] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,”
in Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security. ACM, 2013, pp. 265–276.

[20] S. Zittrower and C. C. Zou, “Encrypted phrase searching in the cloud,” in
Global Communications Conference (GLOBECOM), 2012 IEEE. IEEE,
2012, pp. 764–770.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in INFOCOM, 2011
Proceedings IEEE. IEEE, 2011, pp. 829–837.

[22] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Advances
in Cryptology–EUROCRYPT 2005, pp. 557–557, 2005.

[23] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya, “Id-based encryption
for complex hierarchies with applications to forward security and
broadcast encryption,” in Proceedings of the 11th ACM conference on
Computer and communications security. ACM, 2004, pp. 354–363.

[24] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings
of the 13th ACM conference on Computer and communications security.
ACM, 2006, pp. 89–98.

